
Autogenerating Software Polar Decoders
Gabi Sarkis⋆, Pascal Giard⋆, Claude Thibeault†, and Warren J. Gross⋆

⋆Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada
Email: gabi.sarkis@mail.mcgill.ca, pascal.giard@mail.mcgill.ca, and warren.gross@mcgill.ca

†Department of Electrical Engineering, École de technologie supérieure, Montréal, Québec, Canada
Email: claude.thibeault@etsmtl.ca

Abstract—Polar decoders are well suited for high-speed soft-
ware implementations. In this work, we present a framework for
generating fully-unrolled software polar decoders with branchless
data flow. We discuss the memory layout of data in these decoders
and show the optimization techniques used. At 335 Mbps, when
decoding a (2048, 1707) polar code, the resulting decoder has
more than twice the speed of the state of the art floating-point
software polar decoder.

Index Terms—polar codes, decoder, software

I. Introduction

Polar codes [1] have been the topic of significant research
recently, due to their ability to asymptotically achieve the
symmetric channel capacity when decoded using the low-
complexity successive-cancellation (SC) decoding algorithm.

Multiple hardware decoders have been presented in litera-
ture [2]–[5]; the fastest of which [5] achieved an information
throughput of 1 Gbps when decoding a (32768, 29492) polar
code on an field-programmable gate-array (FPGA) running at
100 MHz.

Recently, software polar decoders have been shown to have
high throughput when running on modern CPUs [6]. These
decoders implement the fast simplified successive-cancellation
(Fast-SSC) algorithm introduced in [5], exploiting CPU par-
allelism by using single-instruction multiple-data (SIMD) in-
structions. When decoding a (32768, 29492) polar code on a
single CPU core running at 3.4 GHz, the floating-point decoder
and the 8-bit fixed-point decoders had information throughput
of 156 and 226 Mbps, respectively.

The length of the polar codes used by the decoders of
[6] is defined at compile-time. The rate of the codes and
the location of frozen bits can be configured at run-time by
changing a file containing instructions corresponding to the
code. This flexibility comes at the cost of extra control logic
and indirection in function calls, reducing the speed of the
decoder. Knowing the location of the frozen bits at compile
time enables us to further exploit SIMD parallalisation and
write branchless decoder source code.

In this work, we present a framework for generating branch-
less compile-time-specified polar decoders that offer signifi-
cant speed improvements over state of art software decoders
and most hardware polar decoders. We start by reviewing
decoder trees of polar codes and the Fast-SSC decoding algo-
rithm in Section II. We then describe the framework generating
the decoders in Section III and the decoder architecture in

u0 + + +

u1 + +

u2 + +

u3 +

u4 + +

u5 +

u6 +

u7

(a) Graph (b) Decoder tree

Fig. 1: From a graph to a decoder tree, the case of a (8, 3)
polar code.

Section IV. Finally, the results of the proposed decoder are
compared with others in literature in Section V.

II. Background

A. Decoder Trees of Polar Codes

Every polar code of length N is the concatenation of two
constituent polar codes of length N/2 [1]. As shown in [7], this
structure leads to binary trees being a natural representation
of polar codes. Fig. 1 shows how to represent an (8, 3) polar
code as a binary tree. In Fig. 1a, the frozen—always set to
zero—bits are labeled in gray while the information bits are
in black. The corresponding tree, shown in Fig. 1b, uses white
and black leaf nodes to denote frozen and information bits,
respectively. The gray nodes in Fig. 1b correspond to the
operations required to perform the concatenation shown in
Fig. 1a, and each sub-tree corresponds to a constituent code.

Successive-cancellation (SC) decoding traverses the decoder
tree depth-first, exploring left edges before backtracking to
right ones, and progressing all the way to the size-1 frozen
and information leaves. The decoder uses log-likelihood ratios
(LLRs) for messages passed to children and bits for the
messages passed to parents. These messages are denoted α

and β , respectively. Messages to a left child l are calculated
by the f operation using the min-sum algorithm according to

αl[i] = f (αv[i],αv[i + Nv/2])
= sgn(αv[i])sgn(αv[i + Nv/2]) min(|αv[i]|, |αv[i + Nv/2]|);

v

left

right

αv
βv

βl
αl

βr

αr

(a) SC
(b) SSC

Repetition

SPC

(c) Fast-SSC

Fig. 2: Decoder trees corresponding to the SC, SSC and Fast-
SSC decoding algorithms.

where Nv is the size of the corresponding constituent code
and αv the LLR input to the current node. Messages to a right
child are calculated according to the g operation

αr[i] = g(αv[i],αv[i + Nv/2], βl[i])

=

αv[i + Nv/2] + αv[i] when βl[i] = 0,
αv[i + Nv/2] − αv[i] when βl[i] = 1;

(1)

where βl is the bit estimate from the left child.
The bit estimates are calculated at the leaves either by

setting them to zero for frozen bits or by performing threshold
detection for information ones. Once a node has the bit
estimates from both its children, it combines them to generate
its own estimate, which is passed to its parent, according to

βv[i] =

βl[i] ⊕ βr[i] when i < Nv/2,

βr[i] otherwise;
(2)

where ⊕ is modulo-2 addition (XOR).
The simplified successive-cancellation (SSC) [7] algorithm

does not traverse a sub-tree whose leaves are all frozen as
its bit estimate is known a priori to be the all zero vector.
Similarly, sub-trees where all leaves are information nodes
need not to be traversed either as the maximum-likelihood
(ML) output of such a tree can be obtained by performing
element-wise threshold detection on the soft-information input
vector, αv. This reduces the number of nodes in the tree and the
associated number of calculations, thereby increasing decoding
speed. Fig. 2a shows the SC tree of a (8, 4) polar code. Fig. 2b
is the SSC pruned tree corresponding to the same code in
which the white and black nodes correspond to the Info and
Frozen node types respectively.

B. The Fast-SSC Decoding Algorithm

In [8], it was shown that further pruning of the decoder tree
by using resource-constrained exhaustive-search ML decoding
for all constituent codes of length 4 and rate R ∈ (0, 1)
improved decoding speed significantly compared to the SSC
decoding algorithm.

More pruning opportunities were introduced in the Fast-
SSC decoding algorithm [5]. Repetition codes were identified
and decoded with an efficient ML decoding algorithm; and

so were single-parity-check (SPC) codes. Other node mergers
were introduced as well and are discussed in [5].

Fig. 2c illustrates the tree corresponding to a Fast-SSC
decoder. It has significantly fewer nodes to visit and operations
to perform than that of the SSC decoder. As such, the Fast-
SSC decoder is faster than the SSC decoder [5].

III. Optimized Polar-Decoder Generator
In this section we describe the optimized polar-decoder

generator (OPDG) we developed to generate polar decoders.
It operates in three phases: generating the SC tree, pruning
the tree to that of a Fast-SSC decoder, and generating the
unrolled C++ code. A user provides OPDG with optimization
parameters and a file containing the frozen-bit locations of
the polar code to obtain a C++ file containing the decoder
flow. This decoder file is compiled in combination with other
files containing implementation details using a C++ compiler
resulting in the decoder executable.

OPDG parses the polar code description into a binary tree
comprising three types of nodes: the leaf nodes corresponding
to frozen bits are rate-0 nodes, those corresponding to infor-
mation bits are rate-1 nodes, and all the non-leaf nodes are
treated as rate-R nodes. This is the SC decoder tree shown in
Fig. 2a.

A. Tree Optimization
The optimizer is provided with a list of available node

types. It traverses the decoder tree top-to-bottom starting with
the root node. At each node, the optimizer tests whether the
node can be replaced by another node type with a lower cost.
The cost is defined according to the targeted implementation,
e.g. in terms of latency or hardware resources used. For the
software decoder, the cost function is directly proportional to
the number of memory accesses. When multiple nodes can be
used, the one with the lowest cost is chosen. If the replacement
node function does not require sub-tree traversal in a direction,
the optimizer only traverses the other direction. When a node
is a leaf node, e.g. SPC or Repetition, the optimizer stops and
moves back up to the parent node. Fig. 2b is the optimized
decoder tree for an (8, 4) code when Info and Frozen node
types are enabled. While, Fig. 2c shows the decoder tree
built with cost measured using latency and with the SPC and
Repetition nodes enabled as well. It can be observed that
Repetition and SPC nodes replaced higher-latency sub-trees.

B. C++ Code Generation
The final stage in the compilation process is to generate the

decoder C++ source code. The C++ code generator traverses
the optimized decoder tree starting with the root node. For
each node, the following occurs

1) If the node has a left child, generate code to calculate
αl and move to the left child.

2) If the node has a right child, generate code to calculate
αr and move to the right

3) When messages from both children are available, or the
node is a leaf, generate code to calculate βv and move
to the parent.

Algorithm 1 printNode(node)

if node.hasLeftChild() then
print function-call to calculate αl

printNode(node.leftChild())
end if
if node.hasRightChild() then

print function-call to calculate αr

printNode(node.rightChild())
end if
print function-call to calculate βv

Listing 2 Unrolled (8, 4) Fast-SSC Decoder

F<8>(αc, α1);
Repetition<4>(α1, β1);
G<8>(αc, α2, β1);
SPC<4>(α2, β2);
Combine<8>(β1, β2, βc);

This process is summarized in Algorithm 1 and is applied
recursively until the code to calculate the root node’s βv output
has been generated.

The unrolled function calls corresponding to the decoder
in Fig. 2c are shown in Listing 2 and further illustrated in
Fig. 3. The decoder receives the channel information αc and
applies the f operation to the 8-LLR input, generating the 4-
LLR output α1 by calling the F function. The left child of the
root is a repetition node of size 4 that takes α1 and generates
β1. Once β1 is computed, the decoder is back at the root node
and applies the g operation to αc and β1 to calculate the input
to the root’s right child, α2. The SPC node of size 4 uses α2 to
calculate β2, which is then combined with β1 to generate the
estimated codeword βc. From this example, it is observed that
data flows sequentially from one decoder function to the next,
without any conditionals or loops. The node sizes are passed
as template arguments, indicated by < and >, to enable better
exploitation of compile-time vectorization as will be shown in
Section IV.

IV. The Decoder
A. Memory Layout

There are two types of information to store in this decoder:
the LLR values and the bit values. They are respectively
denoted as α and β .

α values are represented using single-precision floating-
point numbers. A contiguous section of memory is allocated
for the log2 N stages of α values. This memory is aligned to
a 16- or 32-byte boundary when SSE or AVX instructions are
used, respectively. In addition to aligning the entire block, the
memory for each stage is also aligned to the same boundary.
This allows for vectorization even when the stage size Nv is
smaller than the CPU vector size. The memory wasted by not
tightly packing the stages of α memory is small. For example,
for an N = 32768 polar decoder using the AVX instruction set,
the size of the α memory required by the proposed scheme
is 262,160 bytes. The memory required by a tightly-packed

α1

β1

α2

β2

αc

βc

(a) Messages

F<8>
Repetition<4>

G<8>
SPC<4>

αc

Combine<8>

(b) Operations

Fig. 3: Dataflow graph of a (8, 4) polar decoder.

scheme amounts to 262,140 bytes. Thus our scheme results in
a mere 20-byte overhead.

Copying βr to βv unchanged constitutes half the operations
in (2) and a significant amount of all calculations involving
β values. Therefore, the β memory layout was designed to
eliminate the need for copy operations in such cases. Only N
β values are stored, each as a single-precision floating-point
number. Thus, unlike the α memory, there is no padding or
explicit alignment except for the overall memory. However,
since the stage sizes are all powers of two, stages of sizes
equal to or larger than the CPU vector size will be implicitly
appropriately aligned so that efficient vector operations can be
used.

B. Computation
While the compiler generates the decoder code calling

each function, the functions themselves were manually im-
plemented in a different file using intrinsics targeting the
SSE or AVX instruction set. In this work, we only detail
the AVX implementation since the SSE one can be similarly
implemented. To enable vectorization when implementing the
g operation (1) in the form of the G functions, β values were
implemented using the single-precision floating-point values
-1.0 and 1.0. This can be further optimized as will be shown
in Section IV-C.

Since the sizes of the constituent codes are known at com-
pile time and provided as template parameters, each function
had two implementations: one for stages smaller than the
AVX vector size—8 single-precision floating-point values—
where vectorization is not possible or straightforward, and
one for the larger stages. For example, Listings 3 and 4 show
the vectorized and non-vectorized implementations of the g
operation where α∗ and β ∗ are pointers to α and β values
respectively. P is the number of elements per SIMD vector—
8 for AVX. When the size Nv of a node is greater than P,
the vectorized function is used, the non-vectorized one is
used otherwise. Those listings also illustrate how branching is
avoided for the g function by using multiplication by elements
of βin to change the sign of elements of αin.

By providing the function implementation as template spe-
cializations, we allow the C++ compiler to unroll loops, which
all have compile-time known bounds, and inline functions as
it deems fit.

C. Other Optimization
The goal of the multiplication in Listings 3 and 4 is to

change the sign of αin[i] when βin[i] is negative. However,

Listing 3 Vectorized G function (g operation)

template<unsigned int Nv>
void G(α∗ αin, α∗ αout , β ∗ βin) {

for (unsigned int i = 0; i < Nv/2; i += P) {
m256 αl = mm256 load ps(αin + i);
m256 αr = mm256 load ps(αin + i + Nv/2);
m256 βv = mm256 load ps(βin + i);
m256 α ′l = mm256 mul ps(βv, αl);
m256 αv = mm256 add ps(αr, α ′l);
mm256 store ps(αout + i, αv);

}

}

Listing 4 Non-vectorized G function (g operation)

template<unsigned int Nv>
void G(α∗ αin, α∗ αout , β ∗ βin) {

for (unsigned int i = 0; i < Nv/2; ++i) {
αout[i] = αin[i + Nv/2] + (βin[i] ∗ αin[i]);
}

}

floating-point multiplication, used as well when combining βl

and βr to calculate βv, is a slow operation. To eliminate it,
we take advantage of the IEEE-754 standard representation
for floating-point numbers used in modern CPUs. Under this
standard, a number’s most-significant bit represents the sign
and we can perform the sign-change operation using a bit-
wise XOR operation where all bits in the β values are always
zero with the exception of the sign bit. Therefore, we use
β ∈ {0.0,−0.0} and XOR operations instead of β ∈ {1.0,−1.0}
and multiplication to significantly increase the speed of the
decoder.

V. Experimental Results

A. Methodology

In this section, we compare the proposed software polar
decoder with the fastest software polar decoders in literature
[6] and to some hardware polar decoders. For that purpose,
all software were compiled using the C++ compiler from
GCC 4.8 using the flags “-march=native -funroll-loops
-Ofast”. Auto-vectorization and link-time optimization were
enabled as per default. Decoders are inserted in a digital
communication chain to measure their performance. We use
binary phase shift keying (BPSK) over an AWGN channel
with random codewords.

The time required to decode a frame, or latency, includes
the time required to copy a frame to decoder memory and
copy back the estimated codeword, and is measured using the
high precision clock provided by the Boost Chrono library.
Codeword generation, transmission over the channel, and
demodulation are excluded from calculations. The copying
of data to and from the decoder is included to facilitate
comparisons with non-CPU-based decoders.

TABLE I: Comparing software polar decoders for codes of
rates 1/2, 5/6, 0.84 and 0.9.

Decoder (N, k) Info T/P (Mbps) Latency (µs)

[6] (2048, 1024) 71.50 14
this work 147.34 7

[6] (2048, 1707) 154.06 11
this work 335.17 5

[6] (16384, 14746) 151.23 98
this work 292.43 50

[6] (32768, 27568) 123.68 223
this work 219.77 125

[6] (32768, 29492) 156.40 189
this work 260.81 113

Decoders were allowed to use only one core of an Intel
i7-2600 x86 CPU running at 3.4 GHz, with turbo-boosting
disabled.

B. Comparison with Previous Works

In this subsection we compare the information throughput
and latency of decoders generated with the proposed frame-
work against the single-precision floating point version of the
decoders presented in [6]. To the best of our knowledge, the
SIMD decoders of [6] are the fastest software polar decoders
in the literature.

Table I shows that our proposed decoder has a lower latency
and greater throughput for all polar codes and every code rate.
The improvement is close to a factor of 2 for almost all codes.
The (2048, 1707) polar code shows the greatest improvement
at 2.18 times the throughput. On the opposite side of the
spectrum, is the (32768, 29492) code with a 1.67 time speedup.

C. A Note About Hardware Polar Decoders

Even though the proposed decoder uses the single-precision
floating-point number representation instead of quantized inte-
gers, this work is competitive with most hardware implemen-
tations with the exception of the tree-based 2b-SC decoder
of [4] and the hardware implementation of the Fast-SSC
algorithm [5]. For example, the semi-parallel polar decoder
of [2] is nearly 5 and 10 times slower for the (2048, 1707)
and (32768, 29462) codes, achieving only 69.2 Mbps and
27.6 Mbps respectively. The proposed decoder is slower than
the fastest non-Fast-SSC decoder in literature [4] which has
an estimated information throughput of 250 Mbps at 750 MHz
for a (1024, 512) code. This work is 1.7 times slower at
144.3 Mbps for the same code.

VI. Conclusion

In this paper we have presented a software framework to
autogenerate polar decoders. Its use results in fully-unrolled
decoders with a branchless data flow that can be better
optimized at compile time. As a consequence, these decoders
present a much lower latency and greater throughput than our
previous works.

ACKNOWLEDGEMENT
Claude Thibeault is a member of ReSMiQ. Warren J. Gross

is a member of ReSMiQ and SYTACom. The authors would
like to thank Alexandre J. Raymond for helpful discussions.

References

[1] E. Arıkan, “Channel polarization: A method for constructing
capacity-achieving codes for symmetric binary-input memoryless
channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[2] C. Leroux, A. Raymond, G. Sarkis, and W. Gross, “A semi-parallel
successive-cancellation decoder for polar codes,” IEEE Trans. Signal
Process., vol. 61, no. 2, pp. 289–299, 2013.

[3] A. Pamuk and E. Arıkan, “A two phase successive cancellation decoder
architecture for polar codes,” in IEEE Int. Symp. on Inf. Theory (ISIT),
Jul. 2013, pp. 1–5.

[4] B. Yuan and K. Parhi, “Low-latency successive-cancellation polar
decoder architectures using 2-bit decoding,” IEEE Trans. Circuits Syst.
I, vol. 61, no. 4, pp. 1241–1254, April 2014.

[5] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar
decoders: Algorithm and implementation,” IEEE J. Sel. Areas Commun.,
vol. 32, no. 5, pp. 946–957, May 2014.

[6] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “Fast software polar
decoders,” in IEEE Int. Conf. on Acoustics, Speech, and Signal Process.
(ICASSP), 2014, pp. 7555–7559.

[7] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified
successive-cancellation decoder for polar codes,” IEEE Commun. Lett.,
vol. 15, no. 12, pp. 1378–1380, 2011.

[8] G. Sarkis and W. J. Gross, “Increasing the throughput of polar
decoders,” IEEE Commun. Lett., vol. 17, no. 4, pp. 725–728, 2013.

