
A 638 Mbps Low-Complexity
Rate 1/2 Polar Decoder on FPGAs

Pascal Giard∗, Gabi Sarkis∗, Claude Thibeault‡, and Warren J. Gross∗
∗Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada.

Email: {pascal.giard, gabi.sarkis}@mail.mcgill.ca, warren.gross@mcgill.ca
‡Department of Electrical Engineering, École de technologie supérieure, Montréal, Québec, Canada.

Email: claude.thibeault@etsmtl.ca

Abstract—Polar codes are capacity-achieving error-correcting
codes with an explicit construction that can be decoded with
low-complexity algorithms. In this work, we show how the state-
of-the-art low-complexity decoding algorithm can be improved
to better accommodate low-rate codes. Dedicated hardware is
added to efficiently decode new constituent codes. Also, we use
polar code construction alteration to further improve the latency
and throughput. A polar decoder for a (1024, 512) code is
implemented on two different FPGAs. It has 25% lower latency
over the previous work and a coded throughput of 436 Mbps and
638 Mbps on the Xilinx Virtex 6 and Altera Stratix IV FPGAs,
respectively.

I. Introduction

Polar codes are a family of capacity-achieving error-
correcting codes with an explicit construction introduced by
Arıkan [1]. They were proved to achieve the capacity of
binary symmetric memoryless channels when decoded with
the low-complexity successive-cancellation (SC) algorithm.
However, the SC decoding algorithm is sequential in nature
leading to decoder implementations with high latency and low
throughput.

To increase speed, two new decoding algorithms derived
from SC were introduced [2], [3]. These two algorithms work
by using dedicated algorithms on parts of a polar code; they
exploit the recursive construction of polar codes and the a
priori knowledge of the information bits’ location. The more
efficient of the two is the Fast-SSC algorithm introduced in
[3].

While the Fast-SSC algorithm represents a significant im-
provement over the previous decoding algorithms, it works
better with high-rate codes. In this paper, modifications to
the algorithm and implementation are proposed that make it
perform better for low-rate codes. We also alter the polar code
construction to further improve latency and throughput at the
cost of a small error-correction performance degradation.

We start this paper by providing some background in
Section II. We then discuss how a polar code construction is
altered to improve the latency and throughput of a decoder
in Section III. In Section IV, modifications to the original
Fast-SSC algorithms are proposed in order to improve the
same metrics. Sections V and VI present the implementation
details along with the detailed results for two different FPGAs.
Finally, Section VII concludes this paper.

II. Background

A. Polar Codes

Polar codes are a type of block code with a recursively-
built generator matrix, i.e. a polar code of length N is built
from the concatenation of two constituent polar codes of length
Nv = N/2.

An (N, k) polar code has a length of N bits, contains
k information bits, and N − k parity bits. The encoding
process can be described as follows. A vector containing the k
information bits is first expanded into a vector of length N by
inserting frozen bits at given locations. The resulting vector
is then multiplied by the generator matrix to yield the polar
codeword. The frozen bits are usually set to zero and their
optimal locations depend on the channel type and condition
as discussed in [4].

It was shown in [5] that polar codes can be encoded and
decoded systematically. This leads to an improved bit-error
rate (BER) without affecting the frame-error rate (FER). In
this work, systematic polar codes are used.

B. From graph to decoder trees

As shown in [2], [3], polar codes can be represented as trees.
Using only the three node types introduced in [2]—rate-0, rate-
1 and rate-R—the graph of Fig. 1a can be represented as the
decoder tree of Fig. 1b. The black and gray ui labels of Fig. 1a
correspond to information and frozen bits, respectively.

u0 + + + x0

u1 + + x1

u2 + + x2

u3 + x3

u4 + + x4

u5 + x5

u6 + x6

u7 x7

(a) Graph

left

right

(b) Decoder Tree

Fig. 1: Representing polar codes.

In Fig. 1b, the rate-0 nodes are white, rate-1 nodes are black
and the gray ones are of rate R, where 0 < R < 1. Rate-R

nodes can be seen as constituent codes with an associated
frozen bit pattern. As will be shown in the next section, a
decoder tree can be further trimmed when specialized node
types are created to decode certain constituent codes of rate-
R.

C. Fast-SSC Decoding
The Fast-SSC algorithm presented in [3] further trims the

decoder tree by using different, more efficient algorithms to
decode some constituent codes. The constituent codes directly
decoded in the Fast-SSC algorithm have different maximum
lengths Nv depending on the complexity of the corresponding
decoding algorithm e.g. for a repetition node, Nv was set to
16 while it was set to 4 for an exhaustive search maximum-
likelihood (ML) node. Beyond direct decoding of constituent
codes, other methods were proposed to exploit the code
structure, leading to reduced decoding latency and increased
throughput.

The decoder tree node types corresponding to the decoding
algorithm of [3] are summarized in Table I. Note that the
01 node was named ML in [3]. We briefly review the most
important operations and leaf node types below.

1) F Operations: The F operation generates the messages
to be sent to a left child and is performed using the min-sum
approximation as defined in [6]:

αl[i] = F(αv[i],αv[i + Nv/2])
= sgn(αv[i])sgn(αv[i + Nv/2]) min(|αv[i]|, |αv[i + Nv/2]|),

(1)

where αv are soft reliability values, represented as log-
likelihood ratios (LLRs), from the parent node, and Nv is the
node input length.

2) G and G 0R Operations: The G operation generates
the messages to be sent to a right child node. It is performed
as defined in [6]:

αr[i] = G(αv[i],αv[i + Nv/2], βl[i])

=

αv[i + Nv/2] + αv[i], when βl[i] = 0;
αv[i + Nv/2] − αv[i], otherwise,

(2)

where βl is the bit estimate vector generated by the left sibling
in the subtree.

The G 0R operation is a special case of the G operation,
where the left-hand-side sibling in the subtree is a rate-0 node,
i.e. βl is a all-zero vector.

3) Combine and Combine 0R Operations: The Combine
operation corresponds to the concatenation of two bit-estimate
vectors generated from the left and right child nodes. As an
example, going up the tree, the node circled in blue in Fig. 1b
combines the bit-estimate vectors from its children to provide
the root node of the decoder tree with a bit estimate vector
for the right-hand-side subtree. In the graph representation
illustrated in Fig. 1a, the same operation is also circled in
blue and illustrates how the Combine operation calculates the
bit estimate vector βv:

βv[i] =

βl[i] ⊕ βr[i], when i < Nv/2;
βr[i − Nv/2], otherwise,

(3)

TABLE I: Decoder tree node types supported by the original
Fast-SSC polar decoder.

Name Color Description

0R White and gray Half-left side is frozen.
R1 Gray and black Half-right side is all information.

RSPC Gray and yellow Half-right side is an SPC code.
0SPC White and yellow Half-left side is frozen, half-right side

is an SPC code.
Rep Green Repetition code, maximum length Nv of

16.
RepSPC Green and yellow Concatenation of a Repetition code on

the left and an SPC code on the right,
Nv = 8.

01 Black and white Fixed-length pattern Nv = 4 where the
left half is frozen and the right half is
all one.

rate-R Gray Mixed rate node.

where βl and βr are bit estimates emanating from the left and
right child nodes, respectively.

Similar to the G 0R operation, the Combine 0R operation
is a special case where the left-hand-side sibling in the subtree
is a rate-0 node i.e. βl is a all-zero vector.

4) Repetition Nodes: Repetition nodes provide the bit esti-
mate vector for a repetition code. A repetition code contains
a single information bit that is replicated over the length Nv

of the code. The maximum-likelihood decoding rule for these
codes is to perform threshold detection on the sum of the input
LLRs [3].

5) Single-parity-check Nodes: Single-parity-check (SPC)
nodes provide bit estimates for SPC codes. The least signifi-
cant bit of an SPC code is the parity bit of the other, informa-
tion, bits. The maximum likelihood algorithm to decode them
consists of first verifying that the parity bit is consistent with
the hard decisions on the information bits’ value. In case where
it is not, the hard decision of the least reliable information bit
is flipped.

The remaining nodes are a concatenation of the operations
and nodes described above, or an extension. For example,
the RepSPC node is the concatenation of a Repetition node
with an SPC node with a constant length Nv = 8. Another
example is the 0SPC node, which is the concatenation of a
rate-0 node and an SPC node. Thus, it replaces the execution
of three operations: a G 0R operation, an SPC operation and
a Combine 0R operation.

With the specialized nodes and operations of Fast-SSC, the
trimmed decoder tree for the (8, 3) polar code illustrated in
Fig. 1 is made of a single 0SPC node.

III. Altering the Code Construction

In [7], [8], formalized methods for altering the construction
of polar codes with the aim of optimizing the performance
of a simplified successive-cancellation (SSC) decoder were
presented. In this section, we show how we use polar code
construction alterations to significantly improve the latency
and throughput of a hardware polar decoder utilizing the Fast-
SSC decoding algorithm.

Fig. 2: Decoder tree for the polar code built using [4] and
decoded with the nodes and operations of [3].

A. Original Construction

As mentioned in Section II-A, a good polar code is con-
structed by selecting which bits to freeze, according to the
type of channel and its conditions. Many construction methods
using approximations were published e.g. [1], [4], [9], [10].

Fig. 2 shows the decoder tree corresponding to the
(1024, 512) polar code constructed using the technique of [4]
where only the node types defined in Table I are used with
the same constraints of [3]. The polar code was optimized for
a Eb/N0 of 2.5 dB. The F and G blocks are constrained to a
maximum of P = 256 inputs meaning that, for nodes with a
length Nv > P,

⌈
Nv/P

⌉
cycles are required. Thus the decoding

latency to decode the tree of Fig. 2 using the algorithm and
implementation of [3] is 220 clock cycles (CC) and the coded
throughput is 4.65 bits/CC.

Altering a polar code to further trim the decoder tree can
result in a significant latency reduction, without affecting
the code rate. By making these modifications however, the
error-correction performance is degraded. Although, as will be
shown in the next section, the impact can be small, especially
if the number of changes is limited.

B. Altered Construction

As shown in [8], it is possible to improve the latency of
an SC-based polar decoder by changing the location of frozen
bits. We do so by freezing a bit location that was previously
set to carry an information bit and by unfreezing a bit location
that will now hold an information bit. We call this process “bit
swapping”. This technique does not alter the code rate as the
total number of information and frozen bits remain the same.

The bits to swap are determined to meet two objectives. The
first one is improving the latency and throughput of the de-
coder. Thus, these bit swaps must eliminate constituent codes
for which we do not have an efficient decoding algorithm and
create ones for which we do. The second one is minimizing
the impact on the error-correction performance. To do so, we
alter the state of the least-reliable information and the most-
reliable frozen bits whose reliability values are similar.

Respecting the above, we were able to decrease decoding
latency from 220 to 189 clock cycles, a 14% improvement,
with 5 bit swaps. That increases the coded throughput to 5.42
bits/CC. The corresponding decoder tree is shown in Fig. 3.

Fig. 3: Decoder tree for the altered polar code.

1 2 3 4

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

FE
R

1 2 3 4
10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
E

R

Tal and Vardy Construction [4] Altered Construction

Fig. 4: Error-correction performance using binary phase shift
keying over an additive white Gaussian channel of the altered
code compared to that of the original code.

As expected, the error-correction performance of the altered
code is degraded as illustrated in Fig. 4. However, the loss
amounts to less than 0.25 dB at a FER of 10−4. For wireless
applications, which are usually the target for codes of such
lengths and rates, this represents the FER range of interest.

IV. New Constituent Decoders

Looking at the decoder tree of Fig. 3, it can be seen that
some frozen bit patterns occur often. Adding support for more
constituent codes to the Fast-SSC algorithm will result in a
reduced latency and increased throughput under the constraint
that the corresponding computation nodes do not significantly
lengthens the critical path of a hardware implementation. As
a result of an investigation, the constituent codes of Table II
were added. Furthermore, post-place and route timing analysis
showed that the maximum length Nv of a Repetition node
could be increased from 16 to 32 without affecting the critical
path.

The new decoder tree shown in Fig. 5 has a decoding latency
of 165 clock cycles, a 13% improvement over the decoder tree
of Fig. 3 decoded with the original Fast-SSC algorithm. Thus,
the coded throughput is 6.206 bits/CC for this polar code.

TABLE II: New functions performed by the proposed decoder.

Name Color Description

Rep1 Green and black Repetition code on the left, rate-1
code on the right, maximum length
Nv of 8.

0RepSPC White and lilac Rate-0 code on the left, RepSPC code
on the right, Nv = 16.

001 3
4 white and 1

4 black Rate-0 code on the left, 01 code on
the right, Nv = 8.

Fig. 5: Decoder tree for the altered polar code with the added
nodes.

To summarize, Table III lists the frozen bit patterns that can
be decoded by leaf nodes. It can be seen that the smallest
possible leaf node has length Nv = 4 while our proposed
decoder tree shown in Fig. 5 has a minimum length Nv = 8.
In other words, Fig. 5 is representative of the patterns listed
in Table III but not comprehensive.

V. Implementation

A. Quantization

Let Qi be the total number of bits used to represent LLRs
internally, Qc be the total number of bits to represent channel
LLRs, and Q f be the number of bits among Qi or Qc used to
represent the fractional part of any LLR. It was found through
simulations that using Qi.Qc.Q f = 6.5.1 quantization led to an
error-correction performance very close to that of the floating-
point number representation as can be seen in Fig. 6.

B. Rep1 Node

The Rep1 node provides a bit estimate vector for the Rep1
code of fixed length Nv = 8. The bit estimate vector β 7

0
is calculated using operations described in the previous sec-
tions. However, instead of performing the required operations
sequentially, the dedicated hardware preemptively calculates
intermediate soft values.

Fig. 7 shows the architecture of the Rep1 node. It can be
seen that there are two G blocks. One preemptively calculates
soft values assuming that the Rep block will output β = 0
and the other for β = 1. The Rep block provides a single bit
estimate corresponding to the information bit the repetition
code of length Nv = 4 it is decoding. The outputs of the G
blocks go through a Sign block to generate hard decisions. The
correct hard decision vector is then selected using the output

TABLE III: Frozen bit patterns decoded by leaf nodes.

Name Pattern

Rep 0001
0000 0001
0000 0000 0000 0001
0000 0000 0000 0000 0000 0000 0000 0001

Rep1 0001 1111
0SPC 0000 0111

RepSPC 0001 0111
0RepSPC 0000 0000 0001 0111

01 0011
001 0000 0011

1 2 3 4

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

FE
R

1 2 3 4
10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
E

R

Float Fixed 6.5.1

Fig. 6: Impact of quantization on error-correction performance.

of the Rep block. Finally, the bit estimate vector β 7
0 is built.

The highest part, β 7
4 , is always comprised of the multiplexer

output. The lowest part, β 3
0 , is either a copy of same output

or its inverse. The inverse is selected when the output of the
Rep block is 1.

Calculations are carried out in one clock cycle. The output
of the F , G and Rep blocks are not stored in memory. Only the
final result, the bit-estimate vector β 7

0 , is stored in memory.

C. High-Level Architecture

The decoder resembles a processor. The high-level architec-
ture of the decoder is presented in Fig. 8. When the decoder
is started, the controller signals the channel loader to start
storing channel LLRs, 32 LLRs (160 bits) per clock cycle,
into the channel RAM. The controller then starts to execute
functions on the processing unit. The processing unit reads
LLRs from the Channel or α-RAM and writes LLRs to the
α-RAM. It reads or writes hard decisions to the β -RAM. The
last Combine operation writes the estimated codeword into
the Codeword RAM, a memory accessible from outside the
decoder.

The decoder is complete with all input and output buffers to
accommodate loading a new frame and reading an estimated
codeword while a frame is being decoded. The required
memory could be made smaller if the nominal throughput
required is lower. The loading or outputting of a full frame
takes less clock cycles than the actual decoding, we have

α7
0 F Rep

G
∣∣∣β = 0 Sign β 7

0

G
∣∣∣β = 1 Sign

β

M
ix

Fig. 7: Architecture of the Rep1 Node.

α-RAM Channel RAM

α-Router Channel Loader Channel

Processing Unit Controller

β -Router Codeword RAM Estimate

β -RAM

Fig. 8: High-level architecture of the decoder.

a pipelined operation; under normal operation, the decoder
should not be slowed down by the I/O operations.

D. Processing Unit or Processor
The core of the decoder is the processing unit or processor

illustrated in Fig. 9 and based on the Fast-SSC implementation
of [3]. Thus, the processor features all the modules required to
implement the nodes and operations described in sections II-C
and IV. Notably, the 01 and RepSPC blocks connected to the
G block implement the 001 and 0RepSPC nodes, respectively,
where the all-zero vector input is selected at the mux m0. The
critical path of the decoder corresponds to the 0RepSPC node
i.e. goes through G, RepSPC, the mux m3, Combine and the
mux m2. It is slightly longer than that of [3].

VI. Results
A. Methodology

Random codewords were generated for transmission using
binary phase shift keying (BPSK) over an additive white
Gaussian noise (AWGN) channel using a software model. The
functionality of the design was verified at the RTL level using
a simulator. We then ran post-place and route with timing
verification of the hardware implementation for two different
FPGAs using the same simulator. Finally, the design was
realized with an FPGA and a testbench was run using FPGA-
in-the-loop with MATLAB and a Xilinx ML605 board.

B. Error-Correction Performance
To validate that the error-correction performance of the

hardware implementation matches expectations, a large num-
ber of frames1 are first decoded through post-place and route
with timing simulation. The netlists with timing annotations
were generated by Xilinx XST. Later, the same frames are
decoded on an FPGA using the FPGA-in-the-loop setup. All
results were in agreement.

1For all Eb/N0 values, a minimum of 100 frames in errors were simulated.

α

β0

0

m0

G

β1

SPC

Sign

01

Rep
SPC

Rep

Rep1

Rep
SPC

01

m3

C
om

bi
ne

F
m1 α′

m2 β′
0

β′
1

Fig. 9: Architecture of the processor.

TABLE IV: Post-fitting and coded throughput results for the
proposed (1024, 512) code for two FPGAs.

FPGA LUTs Reg. RAM f T/P
(kbits) (MHz) (Mbps)

Xilinx Virtex 6 22,115 7,941 2,106 70 436
Altera Stratix IV 24,821 5,823 36 103 638

C. Area and Frequency

In this section, post-fitting results are compared for two
different FPGAs: the Xilinx Virtex 6 XC6VLX240T-2 fea-
tured on the Xilinx ML605 board and the Altera Stratix IV
EP4SGX530KH40C2 present on the terASIC DE4 board. Al-
though the RTL implementation remains essentially the same,
there are 2 minor differences. For the Xilinx implementation,
memory (RAM) bypasses were manually implemented and
synchronous reset signals were used.

Table IV shows the results. It can be observed that the
number of look-up tables (LUTs) and registers required are
very similar for both FPGAs. The RAM usage differs greatly.
We note that Altera reports the effective RAM usage e.g. while
181 9-kbit RAM blocks are used, only 35,840 bits (2.2%) need
to be stored. Xilinx reports the amount of 36-kbit and 18-kbit
RAM blocks allocated but, contrary to Altera, does not specify
the amount effectively used. The most noteworthy difference
is the maximum clock frequency f , a gap greater than 30%.

Timing reports show that the critical path is the same on
both FPGAs, and corresponds to the 0RepSPC node. Xilinx
reports that its longest path amounts to 27 logic stages whereas
the same path has only 19 stages on Altera. While that
alone significantly contributes to the lower achievable clock
frequency on the Xilinx FPGA, examining the critical path

TABLE V: Comparing implementations of decoders for a
(1024, 512) polar code on an Altera Stratix IV FPGA.

Implementation LUTs Regs. RAM f Latency T/P
(kbits) (MHz) (µs) (Mbps)

[11] 1,940 748 7.1 239 9.14 112
[3]* 23,020 1,024 42.8 103 2.14 475
altered code 1.83 553
proposed decoder 24,821 5,823 35.8 103 1.60 638

TABLE VI: Comparing implementations of decoders for a
(1024, 512) polar code on a Xilinx Virtex 6 FPGA.

FPGA LUTs Regs. RAM f Latency T/P
(kbits) (MHz) (µs) (Mbps)

[12] 193,456 6,151 N/A 0.6 3.41 600
190,127 22,928 N/A N/A N/A 1,240

this work 22,115 7,941 2,106 70.2 2.35 436

also reveals some routing congestion on that FPGA.

D. Comparison with Other Works

In this section, the proposed decoder is compared with that
of the state-of-the-art decoders and with that of the original
Fast-SSC implementation [3]. The latter was resynthesized
so that the decoder only has to accommodate polar codes
of length N = 1024 and is marked with an asterisk (*) in
Table V. We also show the effect of using a polar code altered
as described in Section III with the Fast-SSC decoder. The
result is listed as ‘altered code’ and has the same resource
usage and clock frequency as [3]* since that decoder can
decode any polar code of length N = 1024 by changing the
code description in memory.

Table V shows that the proposed decoder achieves the best
latency among all decoders. Its throughput is 5.7 times greater
than the two-phase decoder of [11] and 15% to 34% greater
than the Fast-SSC decoder of [3].

Our work requires an 8% increased in used LUTs in order
to improve the throughput by more than 15%. The difference
in registers and RAM can be mostly attributed to SRAM to
register conversions, a measure taken by the fitter to shorten
the critical path to meet the requested clock frequency. With
leaf nodes with a minimum length Nv of 8 instead of 4, the
combined memory usage shows a modest reduction of under
5% at 43.8 kbits for [3] compared to the 41.6 kbits of the
proposed decoder.

Table VI compares the proposed decoder with that of
[12]. Note that [12] presents results for a Xilinx Vir-
tex 6 XC6VLX550T, an FPGA that is twice as big as the
XC6VLX240T we used but is from the same family. The
amount of RAM required is not reported in [12]. It can still be
seen that the resource usage is an order of magnitude smaller
at comparable throughput, and the latency about 30% lower
at 2.35 µs versus 3.41 µs. The fastest FPGA implementation
presented [12] is pipelined, making its throughput almost 3
times greater compared to that of our work. Its latency and
maximum operation frequency were not reported.

VII. Conclusion

In this work, we showed how the original Fast-SSC algo-
rithm implementation could be improved by adding dedicated
decoders for three new types of constituent codes frequently
appearing in low-rate codes. We also used polar code con-
struction alterations to significantly improve the latency and
throughput of a Fast-SSC decoder at the cost of a small error-
correction performance loss. A proof of concept polar de-
coder for a (1024, 512) code with competitive error-correction
performance was implemented on two common FPGAs. The
resulting latency of 165 clock cycles is a 25% improvement
over the previous work. The coded throughput was shown to
be 436 Mbps and 638 Mbps for the Xilinx Virtex 6 and Altera
Stratix IV FPGAs, respectively.

Acknowledgement

This work was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC). Claude
Thibeault is a member of ReSMiQ. Warren J. Gross is a
member of ReSMiQ and SYTACom.

References

[1] E. Arıkan, “Channel polarization: A method for constructing
capacity-achieving codes for symmetric binary-input memoryless
channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073,
2009.

[2] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified
successive-cancellation decoder for polar codes,” IEEE Commun. Lett.,
vol. 15, no. 12, pp. 1378–1380, Dec. 2011.

[3] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast
polar decoders: Algorithm and implementation,” IEEE J. Sel. Areas
Commun., vol. 32, no. 5, pp. 946–957, May 2014.

[4] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inf.
Theory, vol. 59, no. 10, pp. 6562–6582, Oct 2013.

[5] E. Arıkan, “Systematic polar coding,” IEEE Commun. Lett., vol. 15,
no. 8, pp. 860–862, 2011.

[6] C. Leroux, I. Tal, A. Vardy, and W. Gross, “Hardware architectures for
successive cancellation decoding of polar codes,” in IEEE Int. Conf.
on Acoust., Speech, and Signal Process. (ICASSP), May 2011, pp.
1665–1668.

[7] Z. Huang, C. Diao, and M. Chen, “Latency reduced method for
modified successive cancellation decoding of polar codes,” Electron.
Lett., vol. 48, no. 23, pp. 1505–1506, Nov 2012.

[8] A. Balatsoukas-Stimming, G. Karakonstantis, and A. Burg, “Enabling
complexity-performance trade-offs for successive cancellation decoding
of polar codes,” in IEEE Int. Symp. on Inf. Theory (ISIT), 2014, pp.
2977–2981.

[9] R. Mori and T. Tanaka, “Performance and construction of polar codes
on symmetric binary-input memoryless channels,” in IEEE Int. Symp.
on Inf. Theory (ISIT), 2009, pp. 1496–1500.

[10] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE
Trans. Commun., vol. 60, no. 11, pp. 3221–3227, 2012.

[11] A. Pamuk and E. Arıkan, “A two phase successive cancellation
decoder architecture for polar codes,” in IEEE Int. Symp. on Inf.
Theory (ISIT), Jul. 2013, pp. 1–5.

[12] O. Dizdar and E. Arıkan, “A high-throughput energy-efficient
implementation of successive-cancellation decoder for polar codes
using combinational logic,” CoRR, vol. abs/1412.3829, Mar 2015.
[Online]. Available: http://arxiv.org/abs/1412.3829

